Die Boride HfCo₃B₂ und ZrCo₃B₂ als ternärer CaCu₅-Typ

Von

H. H. Stadelmaier und J.-D. Schöbel

Aus dem Departement of Engineering Research der North Carolina State University, Raleigh (N. C.), USA

Mit 3 Abbildungen

(Eingegangen am 6. November 1968)

Die ternären Boride HfCo₃B₂ und ZrCo₃B₂ kristallisieren im hexagonalen D 2_d-(CaCu₅)-Strukturtyp, Raumgruppe P 6/mmm, a = 4,840, c = 3,036 Å, c/a = 0,627 bzw. a = 4,863, c = 3,043 Å, c/a = 0,625. Die Boratome liegen in einem trigonalen Prisma, das von anderen metallreichen Boriden her bekannt ist. Der ternäre CaCu₅-Typ zeigt eine hohe Raumerfüllung bei einem theoret. Achsenverhältnis c/a = 0,75 und einem theoret. Radienverhältnis 1,5:1:0,81.

The Borides HfCo₃B₂ and ZrCo₃B₂, a Ternary CaCu₅-Type

The ternary borides $HfCo_3B_2$ and $ZrCo_3B_2$ crystallize with the hexagonal D 2_d structure type, space group P 6/mmm, a = 4.840, c = 3.036 Å, c/a = 0.627 and a = 4.863, c = 3.043 Å, c/a = 0.625, respectively. The boron atoms are located inside a trigonal prism that is familiar from other metal-rich borides. The ternary CaCu₅ type has good space filling at a theoretical axial ratio c/a = 0.75 and a theoretical radius ratio of 1.5:1:0.81.

Versuchsdurchführung

Durch Herauslösen in verd. Salzsäure wurde ein Einzelkristall von $HfCo_3B_2$ aus dem Gußgefüge einer ternären Legierung der Zusammensetzung 12 At% Hf, 64 At% Co und 24 At% B isoliert. Die Identitätsabstände des hexagonalen Gitters wurden mit Hilfe einer Drehkristall-Kamera bestimmt. Mit den so ermittelten Gitterkonstanten konnten die Interferenzen der Pulverdiagramme (Kameradurchmesser 114,59 mm, mit Eisen gefilterte CoK α -Strahlung) vollständig indiziert werden. Die

H. H. Stadelmaier u. a.: HfCo₃B₂ und ZrCo₃B₂ als ternärer CaCu₅-Typ 225

relativen Intensitäten von $HfCo_3B_2$ wurden photometrisch ermittelt und unter Berücksichtigung der üblichen Lorentz-, Polarisations- und Multiplizitätsfaktoren (ohne Temperaturfaktor) in experimentelle Strukturfaktoren umgerechnet, die mit den berechneten verglichen wurden. Als Maß der Zuverlässigkeit der Strukturbestimmung dient der Index $R = \sum ||F_{beob.}| - |F_{ber.}|| / |F_{beob.}|$. Der Einfluß des unterschiedlichen Streufaktors von Hafnium und Zirkon wird durch subjektiven Vergleich der Pulverdiagramme der isotypen Hafnium- und Zirkoniumverbindungen bestätigt.

Ergebnisse

Die Ergebnisse der Strukturbestimmung sind in Tab. 1 zusammengestellt. Die Struktur des isotypen ZrCo₃B₂ ist durch Auswertung der Pulveraufnahmen mehrerer Legierungen bestätigt worden mit den nur wenig abweichenden Gitterkonstanten a = 4,863, c = 3,043 Å, c/a = 0,625. Für HfCo₃B₂ ergeben sich die fast ausgelöschten Interferenzen (*hkl*), für die *h*, *k* gerade und *l* ungerade sind, dadurch, daß dafür der Beitrag der Metallatome zum Strukturfaktor gegeben ist durch $f_{\rm Hf} - 3 f_{\rm Co}$,

(hkl)	dbeob.	d _{ber.}	$F_{beob.}$	$F_{\rm ber.}$	(hkl)	dbeob.	$d_{ber.}$	F_{beob} .	$F_{\rm ber.}$
100	4,176	4,192	34,6	38,1	220	1,209	1,210	91,0	91,8
001	3,029	3,036	~ 0	2,2	310	1,163	1,163	29,8	28,5
101	2,454	2,459	55,6	76,5	221	1,124	1,124	~ 0	5,2
110	2,417	2,420	42,1	43,7	212	1,096	1,096	32,8	27,6
200	2,094	2,096	112,0	111,7	311	1,086	1,086	48,0	54,2
111	1,891	1,892	70,6	77,5	400	1,048	1,048	73,0	79,6
201	1,727	1,725	~ 0	0,1	302	1,028	1,028	43,5	31,0
210	1,582	1,584	32,4	32,5	003	1,012	1,012	~ 0	4,3
002	1,518	1,518	127,0	104,3	401		0,9905	n.b.	5,1
102	1,428	1,427	49,0	31,4	103	0,9839	0,9837	50,2	50,9
211	1,403	1,405)	FT A	${31,2}$	320	0,9613	0,9616	16,9	25,4
300	\sim 1,40	1,397	57,4	36,4	222	0,9465	0,9461	59,5	78,6
112	1,287	1,286	46,9	35,2	113	0,9343	0,9336	47,3	53,9
301	1,268	1,269	68,8	64,7	312	0,9232	0,9229	31,0	25,0
202	1,230	1,229	76,1	87,8	321	0,9166	0,9167	48,7	48,8

Tabelle 1. Röntgenographische Untersuchung von HfCo₃B₂

Kristallklasse: Hexagonal 6/mmm. 1 Formelgewicht pro Elementarzelle.

Raumgruppe D¹_{6h} — P 6/mmm, Nr. 191, zentrosymmetrisch.

Gitterkonstanten a = 4,840 Å, c = 3,036 Å, c/a = 0,627.

Volumen der Elementarzelle 61,59 Å³

Zahl der Interferenzen 29, Zahl der $F_{\text{beob.}}$ 24.

Zuverlässigkeitsindex R = 0,138

Besetzung: 1 Hf in (a) 000, 3 Co in (g) 1/2 0 1/2, 0 1/2 1/2, 1/2 1/2 1/2, 2 B in (c) 1/3 2/3 0, 2/3 1/3 0.

Monatshefte für Chemie, Bd. 100/1

wobei $f_{\rm Hf}$ ungefähr dreimal so groß ist wie $f_{\rm Co}$. Keine der anderen für diese Zelle naheliegenden Atomanordnungen, insbesondere solche, bei denen wie im WC-Typ die Metallatome die Punkte eines primitiv hexagonalen Gitters besetzen, erfüllt diese Bedingungen. Das gilt auch für den zur gleichen Raumgruppe zählenden B 35-Typ des ε -TaN^{1, 2}. Für Interferenzen mit h + k ungerade und l gerade ist, abgesehen vom Borbeitrag, F gegeben durch $f_{\rm Hf} - f_{\rm Co}$. Entsprechend wird beobachtet, daß diese Linien bei HfCo₃B₂ merklich stärker sind als bei ZrCo₃B₂.

Besprechung der Ergebnisse

Die in Tab. 1 angegebene Besetzung entspricht der des D 2_d -Typs von CaCu₅^{3, 4}, wobei die sonst mit Metallatomen besetzte Lage (c) mit Bor besetzt ist. Für die Strukturbestimmung ist angenommen worden, daß die Borplätze vollständig belegt sind. Experimentell hat sich die Zusammensetzung dieser Phase nur ungenau bestimmen lassen, da die Gleichgewichtseinstellung bei der Untersuchung des isothermen Schnittes bei 800° C unvollständig geblieben ist⁵. Die Zusammensetzung hat sich als Hf_{>14}Co_{<61}B_{>25} ungefähr abgrenzen lassen, so daß unter Umständen Bor-Leerstellen vorliegen (theoretische Zusammensetzung Hf_{16,7}Co₅₀B_{33,3}). Auch die von Kusma</sub> und Mitarbeitern⁶ angenommene Formel ZrCo₃B für die Zirkoniumverbindung fordert Bor-Unterschuß. Jedenfalls haben diese Boride einen kleinen Homogenitätsbereich, da eine Änderung der Legierungszusammensetzung ohne Einfluß auf die Gitterparameter bleibt.

Der CaCu₅-Typ läßt sich als Kugelpackung beschreiben, wenn man von zwei Grenzfällen ausgeht. Diese sind in Abb. 1 und Abb. 2 durch Projektion auf die Basisebene (001) bzw. Seitenansicht der (100)-Ebene dargestellt. Für den Fall eines einheitlichen Radius der *B*-Atome in AB_5 kann bei Vorliegen eines zusammenhängenden Teilgitters von *B*-Atomen das Achsenverhältnis sofort angegeben werden. Für diesen in Abb. 1 gezeigten Fall ist $c/a = \sqrt{2/3} = 0.817$. Das größere *A*-Atom berührt dabei nur die sechs angrenzenden *B*-Atome der Lage (g) (Abb. 1, obere Teilzeichnung), nicht dagegen die zwölf *B*-Nachbarn auf (c) oder die zwei *A*-Nachbarn auf (a) (Abb. 1, untere Teilzeichnung). Das theoretische Radienverhältnis ist $R_A: R_B = 4/\sqrt{3} - 1 = 1.31$, und die Packungsdichte ist 0.67. Der andere Grenzfall AB_3C_2 zeigt etwas bessere Raumerfüllung mit 0.685. Er kommt dadurch zustande, daß ein kleineres

¹ G. Brauer und K. H. Zapp, Z. anorg. Chem. 277, 129 (1954).

² N. Schönberg, Acta Chem. Scand. 8, 199 (1954).

³ W. Haucke, Z. anorg. Chem. 244, 17 (1940).

⁴ H. Nowotny, Z. Metallkunde 34, 247 (1942).

⁵ J.-D. Schöbel und H. H. Stadelmaier, Metall 23, 25 (1969).

⁶ J. B. Kusma, W. I. Lach, J. W. Woroschilow und B. I. Stadnyk, Isw. Akad. Nauk SSSR, Neorg. Mat. 1, 1112 (1965).

Atom C auf (g) liegt (Abb. 2). Beim Radienverhältnis $R_A: R_B: R_C = 3/2: 1: (4/|/3 - 3/2) = 1,50: 1: 0,81$ berühren sich die Atome allseitig mit Koordinationszahlen 18 um A, 12 um B und 9 um C (mittlere K. Z. 12). Dafür ist c/a = 3/4. Wenn wirklich eine Kugelpackung nach einem der beiden Grenzfälle angestrebt wird, muß man die Größen-

Abb. 1. CaCu₅-Struktur (AB_5) als Kugelpackung Abb. 2. AB_3C_2 als Kugelpackung

änderung der Teilgitter in eine einfache Beziehung zum Radienverhältnis bringen können. Da die bisher bekannten Vertreter des CaCu₅-Typs binär sind, werden für den Grenzfall AB_3C_2 die Radien von B und Czusammengefaßt zu $\widetilde{R}_B = (3 R_B + 2 R_C)/5$. Daraus ergibt sich das neue theoretische Radienverhältnis $R_A: \widetilde{R}_B = 15|\sqrt{3}/16 = 1,624$. Es setzt voraus, daß die B-Atome auf (c) und (g) ihre Größe auf das Radienverhältnis 1:0,81 eingestellt haben. Für beide Grenzfälle sind im Anhang die in Abb. 3 gezeigten Geraden berechnet worden. Für die binären Phasen geben sie die relative Änderung der Abmessung des Teilgitters (c) gegenüber dem aus den Goldschmidtradien (K. Z. 12) berechneten Erwartungswert an. Außerdem sind die vom gemessenen a-Wert hergeleiteten

227

Werte für 50 dem Handbuch von Pearson⁷ entnommene Phasen eingetragen. Sie schließen sich nicht an die eine oder andere Gerade an, sondern füllen das dazwischenliegende Band. Die experimentell bestimmten Achsenverhältnisse liegen mit 0,764 bis 0,844 etwas höher als die theoretischen 0,75 bis 0,817. (Für c/a > 0,817 nähert sich der Atomradius von C dem von A.) Für die beiden Boride ist mit der Annahme

Abb. 3. Größenänderung des Teilgitters auf Punktlage (c) in Abhängigkeit vom Radienverhältnis

 $R_{\rm Bor}(12) = 1,00$ Å der gemittelte Bor—Kobalt-Radius $\widetilde{R}(12) = 1,15$ Å und damit $R_A(12)/\widetilde{R}(12) = 1,37$ bzw. 1,39. Diese Werte liegen im Band der dichten Kugelpackung von Abb. 3. Die entsprechende Dehnung des Teilgitters auf (c) beträgt + 0,05 und liegt damit weit außerhalb dieses Bandes. Folglich macht Bor die für die dichte Packung notwendige Größenänderung nicht mit, sondern bewahrt Metalloidcharakter. Zum Verständnis der Borid-Bildung genügt die direkte Betrachtung der Atomabstände in HfCo₃B₂. Der Kobaltradius schrumpft von R(12) = 1,25auf a/4 = 1,21 Å, der Abstand Hf — Hf von 2 R(12) = 3,16 auf c = 3,036 Å, und der Bor-Radius ergibt sich aus dem Abstand Co—B zu $\sqrt{c^2 + a^2/3}/2 - a/4 = 0,85$ Å, einem Wert, der auch in anderen metallreichen Boriden gefunden wird⁸. Da sowohl Kobalt als auch Hafnium

⁷ W. B. Pearson, A Handbook of Lattice Spacing and Structures of Metals and Alloys, Band 2, Pergamon Press, Oxford (1967).

⁸ H. H. Stadelmaier, R. A. Draughn und G. Hofer, Z. Metallkde. 54, 640 (1963).

scheinbar kleiner geworden ist, sind die Hafniumatome vermutlich in der Richtung der c-Achse gestaucht. Auf keinen Fall darf man annehmen, daß Hafnium und Bor sich berühren (Abstand 2,79 Å), und so fehlt eine wesentliche Voraussetzung für die besprochene Kugelpackung. Die Stabilität dieser Boride ist demnach auf die trigonal prismatische Koordination um das Boratom zurückzuführen. Die gleiche Koordination findet man im orthorhombischen Re_3B^9 oder verzerrt im Zementit-Typ Co_3B^{10} . Den Einbau eines Metallatomes in eine Lage, die normalerweise einem Metalloid vorbehalten ist, findet man in La₃Co mit dem Zementit-Typ¹¹. Dabei hat Kobalt die Sechser-Koordination, die Bor in Co₃B hat. Man kann also sagen, es verhält sich La₃Co zu Co₃B wie LaCo₅ (= LaCo₃Co₂) zu HfCo₃B₂.

Anhang: Berechnung der Gitterdehnung im CaCu₅-Strukturtyp

Man setzt in beiden Grenzfällen ein zusammenhängendes Teilgitter der Atome auf (c) und (g) voraus. Außerdem nimmt man an, daß bei der Radienänderung die Summe der Atomvolumina konstant bleibt, was sich bei anderen dichtgepackten Strukturen z. B. dem Ti₂Ni-Typ bestätigen läßt¹². Die Radien R(12) erfahren eine Änderung ΔR , damit die optimale Raumerfüllung erreicht wird. Die endgültigen Radien sind $R(a) = R(12) + \Delta R$ bzw. $\tilde{R}(c, g) = \tilde{R}(12) + \Delta \tilde{R}$. Das theoretische Radienverhältnis ist $R/\tilde{R} = \rho$. Dann ist

$$R(12) + \Delta R = \rho \left[\widetilde{R}(12) + \Delta \widetilde{R} \right]. \tag{1}$$

Mit der Annahme konstanter Atomvolumen-Summe ist nach Kürzung durch 4π

$$R^2\,\Delta\,R\,+\,5\,ar{R}^2\,\Delta\,ar{R}\,=\,0$$

oder mit $R = \rho \widetilde{R}$

$$\rho^2 \,\Delta \,R + 5 \,\Delta \,\widetilde{R} = 0. \tag{2}$$

Aus (1) und (2) folgt durch Eliminierung von ΔR

$$\Delta \widetilde{R}/\widetilde{R}(12) = (\rho + 5/\rho^2)^{-1} [R(12)/\widetilde{R}(12) - \rho]$$
(3)

Die Gitterkonstante *a* ist gegeben durch $a = 4 R_B$. Für binäres AB_5 ist der einzusetzende Wert für das *B*-Atom $\widetilde{R}(12) = R_B(12)$, unabhängig davon, ob die endgültigen Radien auf (*c*) und (*g*) gleich sind oder nicht.

¹¹ D. T. Cromer und A. C. Larson, Acta Cryst. 14, 1226 (1961).

⁹ B. Aronsson, M. Bäckman und S. Rundqvist, Acta Chem. Scand. 14, 1001 (1960).

¹⁰ S. Rundqvist, Acta Chem. Scand. 16, 1 (1962).

¹² H. H. Stadelmaier und R. A. Jones, Z. Metallkde. 59, 878 (1968).

230 H. H. Stadelmaier u. a.: HfCo₃B₂ und ZrCo₃B₂ als ternärer CaCu₅-Typ

Damit und mit den Zahlenwerten für ρ erhält man aus (3) die Gleichungen der Gitterdehnung,

$$\widetilde{R}/\widetilde{R}(12) = [a - 4 \ \widetilde{R}(12)]/4 \ \widetilde{R}(12) = 0,294 \ [R_A(12)/\widetilde{R}(12) - 1,624]$$

für den ternären Fall und

$$\widetilde{R}/\widetilde{R}(12) = [a - 4 R_{\rm B}(12)]/4 R_{\rm B}(12) = \begin{cases} 0.237 [R_A(12)/R_{\rm B}(12) - 1.310] \\ \text{bzw.} \\ 0.294 [R_A(12)/R_{\rm B}(12) - 1.624] \end{cases}$$

für die binären Fälle. Dies sind die beiden in Abb. 3 dargestellten Geraden.

Die untere Grenze 1,31 des Radienverhältnisses hat bereits $Dwight^{13}$ angegeben, allerdings ohne zu erklären, weshalb die beobachteten Werte so auffallend nach oben abweichen.

Die Verfasser danken dem US Army Research Office, Durham, für die Unterstützung dieser Acbeit.

¹³ A. E. Dwight, Trans. ASM 53, 479 (1961).